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Abstract

Background: The CF transmembrane conductance regulator(CFTR), whose mutations cause cystic fibrosis(CF), depends on
ATP for activation and transport function. Availability of ATP in the cell and even more in specific cellular microcompartments
often depends on a functional creatine kinase system, which provides the ‘energy buffer’ phosphocreatine. Creatine supplementation
has been shown to increase phosphocreatine levels, thus promoting muscle growth and strength in athletes and having protective
effects in neuromuscular disorders.Aim: To test clinically, if creatine supplementation improves maximal isometric muscle strength
(MIMS), lung function and CFTR channel activity in patients with CF, and to determine enzymatic activity of creatine kinase in
respiratory epithelial cells.Methods: In an open-label pilot study 18 CF patients(8–18-year-old) with pancreatic insufficiency
and mild to moderate lung disease received daily creatine supplementation during 12 weeks. Patients were monitored during 24–
36 weeks. Enzymatic activity of creatine kinase was measured in primary epithelial cell cultures.Results: After creatine
supplementation, there was no change in lung function and sweat electrolyte concentrations, possibly due to the very low creatine
kinase activities detected in respiratory epithelia. However, the patients consistently showed signicantly increased MIMS(18.4%;
P-0.0001), as well as improved general well-being, as assessed by a standardized questionnaire. Except for one patient with
transient muscle pain, no side effects were reported.Conclusions: Our pilot study suggests, that creatine supplementation should
be further evaluated as a possible clinically beneficial adjuvant therapy for patients with CF to increase muscle strength, body-
weight and well-being
� 2003 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Creatine(Cr) is a central compound for the energy
metabolism of many tissues with high energy turnover
like muscle or brain. In humans, Cr is mainly synthe-
sized by the liver or ingested in food, especially meat

Abbreviations: CF, Cystic fibrosis; CFTR, Cystic fibrosis trans-
membrane conductance regulator; CK, Creatine kinase(EC 2.7.3.2);
Cr, Creatine; FEV1, Forced expiratory volume in 1 s; FMG, Func-
tional muscle group; MEF 25y75, Mean expiratory flow at 25–75
forced vital capacity; MIMS, Maximal isometric muscle strength;
PCr, Phosphocreatine; RV, Residual volume; TLC, Total lung capacity
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and fish, and taken up into cells via a specific Cr
transporterw1x. Cr then serves as a substrate for creatine
kinase(CK) to generate phosphocreatine(PCr) w2x. In
the cell, isoenzymes of CK are partially associated with
ATP providing processes(e.g. glycolytic enzymes, mito-
chondrial adenylate translocator) to synthesize PCr, or
with ATP consuming reactions to use PCr for the
regeneration of ATP poolsw2,3x. A close association of
cytosolic CK with ATPases allows the direct exchange
of ADP and ATP, known as ‘functional coupling’w4–
8x. These properties make the CKyPCr system a key
factor for cellular energetics in the human body.
Although CK has not yet been analyzed in epithelia of
the respiratory tract, which are relevant to cystic fibrosis
(CF), a functional CKyPCr system has been reported
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for a number of epithelia in the urogenital system, the
digestive tract, skin and some other tissuesw7–15x.
Here, CK seems to sustain high proliferation rates, ion
pumps and active transport processesw7–9x.
Recently, the clinical application of Cr supplementa-

tion has attracted considerable attention. It was found to
increase intracellular Cr and PCr poolsw16,17x, thus
improving muscle growth and strength not only of
athletesw18x, but also of patients with certain myopathies
and neuromuscular diseasesw19–21x. Cr also exerts
marked protective effects in a number of animal models
for neuromusular and neurodegenerative diseases and in
some other pathologiesw22–26x. Cr supplementation
could be beneficial for CF patients through different
mechanisms. First, Cr may generally improve the cel-
lular energy status through elevated PCryATP ratios,
leading to the known positive effects on muscle and
brain functions and thus increasing the general well-
being of CF patients. In fact, an improved energy
balance inducing weight gain has been shown to corre-
late well with an improved clinical long-term prognosis
in patients with CFw27x. Second, Cr could directly act
on the CF transmembrane conductance regulator
(CFTR) channel in respiratory epithelia. This epithelial
chloride transporter, which is rendered non-functional in
CF by mutations in the CFTR genew28x, has a high
ATP requirement. ATP is needed for activation via
phosphorylation by cAMP-dependent protein kinase, and
also for channel gating and chloride transport, which
depends on a dual ATP hydrolysis cyclew29,30x. Thus,
an increased cellular PCr pool together with CFTR or
cAMP-dependent protein kinase functionally coupled to
CK could maintain higher local ATPyADP ratios w2x
for channel opening or CFTR phosphorylation. Such a
functional coupling is well known for HyK -ATPaseq q

in kidney and gastric epitheliaw7,8x or chloride transport
in dogfish epitheliaw31x. It could rescue those CFTR
mutants that are correctly localized and still partially
functional. In fact, close interactions of CFTR with other
energy-related kinases like AMP-activated protein kinase
w32x and nucleoside diphosphate kinasew33x suggest
that CFTR is part of a multi-enzyme complex that may
also comprise CK.
The aim of the present pilot study was to determine

potential effects of Cr supplementation on CFTR-related
pathological symptoms, muscle strength and general
well-being w34x. We have studied 18 CF patients with
different mutations in the CFTR protein in respect to
their lung-function, cellular ion transport(sweat electro-
lytes), muscle strength, body weight and overall well-
ness. In parallel, we have determined CK activity in
primary cell cultures from respiratory epithelia. This
pilot study should be useful to evaluate whether such a
simple intervention with a nutritional supplement could
improve CFTR functioning andyor increase muscle par-
ameters and thus lead to a better general well-being that

would be fundamentally useful to improve life quality
of these patientsw34x.

2. Methods

2.1. Patients

For this pilot study eighteen patients with CF(11
boys and seven girls, age 8–18 years) were recruited
attending the outpatient clinic of the University Chil-
dren’s Hospital Zurich. All patients had pancreatic insuf-
ficiency and mild to moderate lung disease by clinical
and radiographic criteria. Anthropometrical data of
weight and height were recorded. Exclusion criteria
were renal, cardiac, musculoskeletal diseases; and sig-
nificant undernutrition defined as current weight below
85% of weight equivalent to current height. Patients
volunteered and informed consent was obtained. Proto-
col and consent form were approved by the Ethics
Committee of the University Children’s Hospital Zurich.¨

2.2. Study design

The patients were supplemented with a loading dose
of 12 g Cr (Podium –Creatine was a gift from Syner-�

gen, Switzerland) daily for one week and a dose of 6 g
for another 11 weeks. The patients were monitored four
times: before supplementation(baseline); after 4, and
12 weeks(during supplementation); and after 24–36
weeks. With a standardized questionnaire they were
asked for general well-being and dyspnea. Body-weight,
maximal isometric muscle strength(MIMS) and lung
function (FEV1, RV%TLC, MEF 25y75) were meas-
ured. MIMS was scaled with the force gauge instrument
AFG (Mecmesin Limited, West Sussex RH12 3JR, UK)
on the following seven functional muscle groups
(FMGs): shoulder-flexion, shoulder-extension, elbow-
flexion, elbow-extension, hip-extension, knee-flexion,
ankle-flexion. All FMGs were evaluated on both left
and right side of the body. The methods used is described
in detail elsewherew35–37x. Briefly, each joint was
evaluated three times sequentially at each evaluation
visit, interspersed by short rest periods of 1 min. The
maximum strength result was monitored and used. The
evaluation visits were carried out between 2 and 3 h
after the last meal(breakfast or lunch). All children
completed the tests successfully. During the 24–36 week
study period the patients did not do any additional
exercise. The laboratory investigations at each evalua-
tion session included sweat electrolytes, serum electro-
lytes, liver function tests, serum creatinine, creatine
kinase(CK), blood count, blood gases and CRP. Chest
X-rays (Shwachman score) were done three times:
Before supplementation(baseline) and after 12 and 24–
36 weeks.
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Fig. 1. Maximal isometric muscle strength of different functional muscle groups before, during and after creatine supplementation

2.3. Cell cultures and CK enzymatic activity

Primary fetal bovine cell lines were established from
respiratory tract and bronchial epithelium in our labor-
atory as described elsewherew38,39x with minor modi-
fications. Macroscopically normal respiratory organs
were taken from 7-month-old bovine fetuses 2–4 h after
death in the slaughterhouse(Zurich). Mucosal tissue¨
was dissected immediately after removal. Epithelial
strips were incubated at 48C over night in a dissociation
buffer containing dispase type I 0.1%(Roche Molecular
Biochemicals). Suspensions were collected, centrifuged
and the cells were plated in collagen type I coated
culture dishes(Falcon BIOCOAT). Growth of epithelial
cells was stimulated with Ham’s F12 modified medium
w39x, supplemented with 15 mM Cr-monohydrate and
cholera toxin as growth inhibitor of fibroblasts and
melanocytes. After 8–11 days of culture in a humidified
CO incubator, whole cell extracts of approximately2

10 cellsysample were obtained by sonication of cell6

pellets in phosphate buffer pH 7.8, 1 mMb-mercapto-
ethanol, 1 mM PMSF and 0.2 mM EDTA. Extracts of
bovine myocardium were used as positive control. After
centrifugation of lysates, clear supernatants and pellets
were separately analyzed for enzymatic activity of CK
with an electrochemical assay(pH-stat) using PCr and
ADP as substratesw40x. Protein was determined with
the Bio–Rad reagent according to Bradfordw41x, using
bovine serum albumin as standard.

3. Result

3.1. Creatine supplementation—a clinical study

During the Cr supplementation period, MIMS of the
patients increased in all of the investigated FMGs(Fig.
1). The increase was on average 8% after 4 weeks,
14.3% after 12 weeks, and 18.2% after 24–36 weeks
(Table 1), which was statistically highly significant(P-
0.0001). The most pronounced change was seen in the
MIMS of the FMG of the right ankle flexion, which
increased from 14.5 kp at baseline to 17.4 kp at week
4, 19.4 kp at week 12, and 21.0 kp at week 24–36,
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which is an increase of 45%(Fig. 1). Six patients(33%)
reported an improved general well-being, nine patients
(50%) observed no change, and in three patients(17%)
general well-being decreased during the study period.
However, there was no change in lung-function and
chest X-rays(assessed by the Shwachman score). There
was also no change of the sweat electrolytes and other
laboratory parameters(data not shown). Except for one
patient who complained about transient muscle pain in
his legs, no other adverse effects were noted.

3.2. CK enzymatic activity in epithelial cells

We have established bovine primary cell cultures of
different epithelia from the respiratory tract, including
nasal, tracheal, and bronchial epithelia. Enzymatic activ-
ity of CK in soluble and insoluble fractions of crude
cell lysates was then compared to bovine myocardium,
an organ with high expression levels of cytosolic and
mitochondrial CK that relies on a functional CKyPCr
system. All epithelial cells showed very low specific
CK activity in the soluble fraction and no detectable
activity in the insoluble fraction. While specific activity
of soluble CK in myocytes was 2.75 Uymg protein, we
measured only 0.21 Uymg in nasal, 0.02 Uymg in
tracheal and 0.01 Uymg in bronchial epithelial cells.
Supplementation of epithelial cell cultures with 15 mM
Cr didnot increase CK activity nor affect significantly
the growth rate or general morphology of these cells
(data not shown). Thus, the CKyPCr-system is present
in epithelial cells, albeit at a much lower extent as
compared to muscle or brain and, at least in the primary
cell cultures, it is not inducable by Cr supplementation.

4. Discussion

In order to judge the possible significance of an
improved CKyPCr-system for CF-patients, we have
conducted a clinical pilot study on Cr-supplementation
of CF-patients and analyzed CK activity in different
epithelia of the respiratory tract. Although disturbances
in the respiratory system constituted the preponderant
pathology of the CF patients participating in our study,
there was no evidence of a direct effect of Cr on
epithelial cells or CFTR-function in these patients. The
lack of such direct beneficial effects may be due to low
CK expression in respiratory tract epithelial cells and
thus a probably rather low-key CKyPCr system at work.
Alternatively, CK may not associate with CFTR as it
does with different NayK -ATPases w7,8x or otherq q

chloride transportersw31x. However, considering the
physiological functions of these epithelial cells, which
need substantial amounts of ATP for ion pumping, their
specific CK activity was lower than anticipated from
the literature w12,42x. Possibly, these earlier studies
overestimated CK because of either a contamination of

epithelial preparations by underlying smooth muscle, or
due to a concentration of CK at specific subcellular
sites, giving rise to strong positive signals in immuno-
histochemical stainings.
In contrast to respiratory organs, Cr supplementation

had clear beneficial effects on the skeleto–muscular
system, leading to an improved general well-being of
the patients. Such improvements of muscle strength, as
well as a moderate anabolic effect, are known from Cr
supplementation studies in sports physiologyw43,44x.
These are linked to the generally improved cellular
energetics in muscle cellsw45x, more efficient calcium
homeostasisw4x leading to faster muscle relaxationw46x,
as well as to an increase in muscle mass affecting all
fiber typesw47x. However, such effects have so far not
been shown in children and immobilized patients unable
to follow an entrainment program in parallel to Cr
uptake. Here we report a more than 20% increase in
muscle strength in CF patients by just ingesting Cr as a
supplement without exercise schedule. This effect com-
pares favorably with the increases in muscle strength of
well trained athletes undergoing Cr supplementation plus
heavy exercise(usually amounting to 5–10%) or of
patients with neuromuscular diseases(with an increase
of just a few percent in muscle force) w19,21x. In a
recent publication it was shown that Cr ingestion signif-
icantly improves rehabilitation after immobilization atro-
phy, possibly by enhancing myogenic transcription
factors, like MRF4w48x. This can happen to a certain
extent even without exercise. Such a mechanism could
explain the improvement of MIMS in a number of
FMGs in our CF patients.
As long as the basic defect of CF cannot be corrected

w49,50x, symptomatic treatment alleviating symptoms
and thus improving quality of live of CF patients is
highly welcome. So far no serious side-effects have
been reported for Cr supplementationw44x. Since our
pilot study showed beneficial effects on MIMS and
quality of life parameters in CF patients, it seems well
founded to further investigate the beneficial effects of
Cr supplementation on these parameters in a future
randomized placebo-controlled study, preferably in com-
bination with an exercise schedule specifically adapted
to CF patients.
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